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A B S T R A C T   

A failure to consider extreme weather conditions in building design can lead to poor resilience and low passive 
survivability of buildings. Several approaches exist to construct extreme weather files for building performance 
assessments. Since literature comparing such extreme weather datasets is limited, this study aims to examine the 
applicability and limitations of the Summer Reference Year (SRY), Typical Hot Year-Event (THY-E), Typical Hot 
Year-Intensity (THY-I), Extreme Meteorological Year (XMY), and Typical Meteorological Year (TMY) in assessing 
indoor overheating risks of residential buildings, especially in a subtropical high-density living environment like 
Hong Kong. By comparing the simulated temperature with on-site measurements on different summer days, 
building physical parameters of six typical residential archetypes are calibrated in EnergyPlus. Their indoor 
overheating risks are then evaluated by two overheating criteria: the static extreme and adaptive thermal 
comfort thresholds. Results reveal that using the THY-I can generally examine the severest daytime overheating, 
but may fail to evaluate the maximum heat intensity of well-shaded buildings. The longest duration of daytime 
overheating is observed when using the THY-E, and the severest and longest nighttime overheating are found 
using the XMY. By contrast, using the SRY is unsuitable for assessing nighttime overheating risks. This study 
suggests advantages of using a combination of different extreme weather datasets, e.g., the XMY with the THYs, 
to assess overheating risks in high-density settings over the use of a single weather dataset. Furthermore, the 
building type with balconies and openable windows coated with low-e consistently demonstrates better per
formance than the other types.   

1. Introduction 

In recent years the impact of climate change on the built environ
ment is becoming more evident due to the increasing occurrence and 
severity of extreme weather events, such as heatwaves, floods, and 
droughts [1]. These extreme events have devastating effects on the so
ciety, human health, and infrastructure systems [2]. Given that most 
people spend more than 90% time indoors [3] and that buildings play 
one of the most important roles in urban heat resistance (by providing 
essential shelter for residents) [4], robust assessments are required to 
check their resilience to more intense and frequent extreme heat events. 
The climate resilience and passive survivability of buildings, which re
fers to a building’s ability to maintain safe indoor temperatures in the 
absence of air-conditioning (AC) [5], have stirred research interest 

worldwide [6,7]. This is of particular concern to residents with limited 
capacity to operate an AC system, and during summertime power out
ages or when energy systems are overtaxed in unexpected weather 
conditions for which existing building systems were not designed. 
Particularly in the current unforeseen COVID-19 pandemic, people are 
spending more time indoors and the importance of diluting pollutants 
achieved by good natural ventilation has been brought to the public’s 
attention [8,9]. Meanwhile, extreme weather conditions imply that a 
good thermal performance of naturally ventilated buildings will be more 
necessary in the post-pandemic period [10]. Therefore, it is imperative 
to examine buildings’ overheating thermal performance in the face of 
more frequent extreme heat events. 

Climatic uncertainties, for example, extremely hot events, could put 
buildings with poor thermal performance at risk of overheating [11]. In 
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particular, a more hostile environment caused by extremely hot events 
would have the most significant impact on areas with hot summers, 
where residential buildings are already vulnerable to the risks of over
heating [12]. The majority of previous studies on overheating assess
ments for free-running residential buildings are found in European 
temperate climates, for example, the United Kingdom (UK) [13–15], the 
Netherlands [16,17], and Sweden [18], using available datasets of local 
extreme weather. Few studies [19,20] have been conducted in tropical 
and subtropical climates, which have more developing regions with hot 
summer and warm winter climates [21] and hence populations in this 
regions would be particularly affected by global warming [12]. For 
example, in subtropical Hong Kong, some 1.49 million people (~21% of 
the population) are still living below the poverty line [22], and the 
residential stocks consist of a large number of low-income housing units. 
According to a survey conducted in Hong Kong on living conditions in 
public rental housing [23], 17% of living rooms and 22% of bedrooms 
do not have air-conditioners installed. Furthermore, the elderly, 
disabled, and chronically ill people who prefer cooling by passive means 
such as natural or mixed-mode ventilation [24], are significantly 
vulnerable, along with low-income residents who cannot afford to use 
AC due to peak electricity pricing [25]. Different housing types and 
building characteristics can mitigate or exacerbate occupants’ indoor 
heat exposure [26], hence the thermal performance of different resi
dential building types in Hong Kong under extremely hot weather con
ditions is a topic worthy of investigation. 

For building performance simulation (BPS), current building designs 
and evaluation practices usually use the Typical Meteorological Year 
(TMY) [27], the Weather Year for Energy Calculations (WYEC) [28] and 
the Test Reference Year (TRY) [29] weather files as the input climate 
data. These datasets represent the average climatic conditions based on 
15–30 years of historical hourly data but do not consider the un
certainties of extreme weather conditions and the future changing 
climate. To overcome this limitation of the typical year weather data, 
the Design Summer Year (DSY) was first introduced in the UK to 
represent near-extreme weather conditions for assessing overheating 
risks of natural ventilated and mixed-mode buildings in the summer 
months [30]. Additionally, in 2013, Watkins et al. [31] proposed an 
alternative approach to construct a new type Design Reference Year 
(DRY), the DRY is based on individual months according to monthly 
mean dry-bulb temperature, relative humidity, and global horizontal 
irradiance. However, both the DSY and DRY have been criticized for 
poor representativeness and inconsistency with the corresponding TRY 
[32]. To overcome these shortcomings, in 2015 Jentsch et al. [32] 
developed the Summer Reference Year (SRY) by adjusting the typical 
weather year, TRY, to represent a more extreme summer weather con
dition for BPS. As the SRY was found to incorporate the high dry-bulb 
temperature reasonably well, it has proved more useful than the TRY 
in identifying severe overheating risks. More recently, Crawley and 
Lawrie [33] proposed a method to develop the Extreme Meteorological 
Year (XMY) weather files by selecting more extreme months with the 
highest and lowest daily or hourly average dry-bulb temperature to 
represent site-specific extreme climates that buildings could experience. 
They reported that the XMY with hourly maximum and minimum 
dry-bulb temperatures could best capture the range of energy load for 
buildings’ heating ventilation and air-conditioning systems. 

However, the selection of extreme situations is generally based on 
outdoor meteorological variables for these datasets. To account for in
door extreme events, Guo et al. [34] developed a method to construct 
Typical Hot Years (THYs; e.g., the Typical Hot Years-Events (THY-E) and 
the Typical Hot Years-Intensity (THY-I)), for BPS using simulated indoor 
data. The THYs weather files are defined based on the simulated indoor 
heat event intensity and are more focused on building performance 
during extreme heat events. Apart from these widely used extreme 
weather datasets, there are still other newly developed weather datasets 
that consider untypical [35] and future extreme weather conditions [36, 
37]. The constructing methods of the aforementioned widely used 

extreme weather datasets has been summarized in Table 1. 
Above all, it can be seen that with regard to the definition of extreme 

conditions and the methodology to generate the dataset differ for each 
type of weather data, there is no consensus on which weather dataset is 
more appropriate and robust for assessing indoor overheating risks of 
residential buildings, especially in a subtropical high-density city. 
Although some studies [33,38] have discussed the impact of one single 
extreme climatic condition on the indoor thermal environment or 
building energy demand, there is a lack of comparative work examining 
the applicability and limitations of various extreme weather datasets for 
assessing the overheating risks of residential buildings in subtropical 
climates. Therefore, to fill this knowledge gap, this study is one of the 
first to compare the most popular extreme weather datasets, namely the 
THY-E, THY-I, SRY, and XMY, with the TMY for indoor overheating risk, 
providing insight into which extreme weather datasets can fully repre
sent the extreme weather boundaries for assessing overheating risks of 
different residential building types in a subtropical high-density living 
environment. The results will inform architects and building engineers 
in other similar subtropical cities on the selection of the most appro
priate extreme weather dataset for robust building assessment with 
various purposes. As for local interest, the results presented here will be 
helpful in understanding the difference of climate resilience and passive 
survivability between typical Hong Kong residential building types and 
in the formulation of action plans for designing more resilient buildings 
to combat the effects of climate change. 

This paper is structured as follows. The methods and datasets for 
development of extreme weather datasets, selecting typical residential 
building types in Hong Kong, field measurement for building simulation 
calibration, and indoor overheating assessment criteria are described in 
Section 2. Section 3 presents the results of overheating risks using the 
defined static and adaptive overheating thresholds in different resi
dential building types in Hong Kong. This is followed by a discussion on 
the applicability and limitations of different weather dataset and per
formance comparison between different residential building types in 
Section 4. The major findings are concluded in Section 5. 

2. Methods and datasets 

In this section, the methods and datasets which are used in this study 
are discussed as following: (1) Different extreme weather datasets were 
first constructed in Hong Kong based on the recorded multiple-years 
weather data, (2) Then, six typical high-density residential building 
types were selected as residential building “archetypes” in Hong Kong, 

Table 1 
Summary of constructing methods of different weather datasets involving 
extreme weather conditions.  

Weather 
dataset 

Constructing methods Reference 

DSY The third hottest daily mean dry-bulb temperature in 
summer in a 20 years dataset. 

[30] 

DRY Select the year according to the combined ranks of 10 
years of data on either side of the 87.5 percentile year 
of dry bulb temperature, relative humidity and global 
horizontal irradiance data sequence based on 3,000 
synthetic weather years produced by the UKCP09 
projections. 

[31] 

SRY Adjust the typical weather year TRY by employing 
regression equations for dry-bulb temperature, global 
horizontal radiation, wet-bulb and wind speed. 

[32] 

XMY Combine months with highest daily or hourly average 
dry-bulb temperature. 

[33] 

THY-I Select the year with the highest annual total heat event 
intensity based on the simulated indoor dry-bulb 
temperature. 

[34] 

THY-E Select the year with the maximum event intensity and 
duration based on the simulated indoor dry-bulb 
temperature. 

[34]  
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(3) The outdoor and indoor thermal environment of typical building 
types had been simultaneously measured for calibration, (4) Tempera
ture in living room and bedroom were measured to calibrate each 
building simulation model in BPS tool, (5) Indoor overheating criteria 
for naturally ventilated buildings were finally defined for assessing 
building overheating: the local static extreme thresholds and adaptive 
thresholds provided by Technical Memorandum 52 [39]. Fig. 1 shows 
the methodology framework for this study. 

2.1. Constructing extreme weather data 

To represent different extreme weather conditions, four widely used 
weather datasets generated by different methods, namely the THY-E, 
THY-I, SRY, and XMY, were used as the different extreme weather 
conditions to compare with the typical year, the TMY. Based on weather 
data from 1979 to 2003, the existing TMY weather data in Hong Kong 
was constructed using the Finkelstein-Schafer statistical method [27]. In 
our study, to consider the more recent climate changes, key meteoro
logical variables for building performance evaluation, including 
dry-bulb and wet-bulb temperature, relative humidity, direct and diffuse 
solar radiation, and wind speed and direction were acquired from the 
Hong Kong Observatory (HKO) based on the hourly weather datasets 
from 1993 to 2014. The HKO Headquarter’s weather station is a 
representative ground-level urban station in Tsim Sha Tsui, Hong Kong 
[40]. As extreme weather conditions usually occur in the extended 
summer months of Hong Kong, the construction process of extreme 
weather datasets was only applied from April to September. 

2.1.1. Summer Reference Year (SRY) 
To represent a more extreme weather conditions, the SRY was ob

tained by employing polynomial regression and adjusting the typical 

meteorological TRY. The adjusted values for dry-bulb temperature were 
determined by fitting a polynomial regression between the TRY and a 
candidate year which is at the 90th percentile [32]. A similar adjustment 
method was adopted for the wet-bulb temperature and wind speed but 
with an additional scaling factor. The chosen approach for solar radia
tion was based on the 95th percentile of daily global horizontal radiation 
sum. Therefore, the extreme dry-bulb temperature and high solar radi
ation conditions were both included in the SRY generation. The detailed 
generation process of the SRY in Hong Kong are documented in an 
earlier study by authors [41]. 

2.1.2. Extreme Meteorological Years (XMYs) 
The XMYs aim to select more extreme months than the TMY. 

Following the methodology developed by Crawley and Lawrie [33], we 
first calculated the daily maximum, minimum, and average values for 
each month from 1993 to 2014, and then selected months with the 
highest daily maximum dry-bulb temperature as the extreme “daily” 
months. To compare with the extreme “daily” months, the months with 
highest hourly average value of dry-bulb temperature were selected as 
the extreme “hourly” months. As the combination of extreme “hourly” 
months with the highest hourly mean dry-bulb temperature consistently 
had the higher overheating risks for all building types than the extreme 
“daily” months, a combination of 12 extreme “hourly” months was 
finally selected as the XMY year for subsequent analyses. 

2.1.3. Typical Hot Years (THYs) 
THYs are proposed as the weather conditions with the most extreme 

events but with a focus on the indoor thermal environment. Based on the 
different definitions of extreme conditions, three kinds of extreme 
weather data in summer were named as the THY-I, THY-E, and the 
Typical Hot Year-Night (THY-N). THY-I is the year with the highest 

Fig. 1. Methodology framework for this study. Simulation of village house, using THY-E weather file is highlighted as an example.  
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annual total heat event intensity (HI) based on the simulated indoor dry- 
bulb temperature. Following the methodology developed by Guo et al. 
[42], the HI is the sum of the degree hours when the temperature is over 
the threshold, calculated using Eq: 

HI =
∑

Thr − Tl>0
(Thr − Tl) (1)  

where Thr is the hourly air temperature and Tl is the threshold of the 
accepted temperature. Here, 32.8 ◦C was set as Tl according to the 
threshold of very hot days (VHDs) in Hong Kong and the 95th percentiles 
of long-term temperature data, an approach adopted for defining heat
waves and assessing heat-related mortality [43,44]. Additionally, the 
THY-N stands for the year with the highest number of hot night (HNs). 
According to HKO, HNs in Hong Kong are defined as those with a daily 
minimum temperature above 28 ◦C [45]. Taking the most predominant 
public housing buildings and the validated building model as the 
reference building type [46], the year of 2014 was selected as the THY-N 
and THY-I simultaneously, based on the above two indicators, VHDs and 
HNs. Hence, only the THY-I was selected as representative for further 
study. 

To represent the most serious extreme heat event, the year with the 
maximum event intensity and duration is defined as the THY-E. The 
weighted sum (S) of normalized values of two indices, maximum of 
event intensity (M) and the event duration (L), were calculated for each 
year: 

S=wM
M − Mmin

Mmax − Mmin
+ wL

L − Lmin

Lmax − Lmin
(2)  

where Mmax, Mmin, Lmax, and Lmin are the maximum and minimum of M 
and L, respectively; wM and wL are the weights of M and L, both values 
are set as 0.5 as suggested by reference [42]. The year with the highest S 
was selected as the THY-E. 

After developing the above extreme weather datasets, the boxplots of 
outdoor daytime (07h00–18h00) and nighttime (19h00–06h00) tem
peratures above the Tl thresholds for different weather datasets are 
presented in Fig. 2. The comparison of other meteorological variables 
between different weather datasets is plotted in Fig. A1. The HI of 
different weather datasets for daytime and nighttime is also calculated 
in Table 2. 

2.2. Typical high-density residential archetypes in subtropical Hong Kong 

More densely populated cities and high-density buildings have been 
built to accommodate the rapid increases of urban population density, 
especially in subtropical and tropical high-density cities such as Hong 

Kong. Because of the limited land area, most high-density buildings are 
the multi-unit and single-aspect blocks. Since the residential building 
stocks are heterogeneous and have a wide range of building character
istics at city scale, this study conceptually demonstrates the heteroge
neous high-density residential buildings by selecting commonly found 
building types in Hong Kong. The building “archetype” is a widely used 
approach to define a set of reference buildings with the representative 
building characteristics specified for each building category [47]. Ac
cording to the guideline of the Energy Efficiency Office of the Electrical 
and Mechanical Services Department in Hong Kong, it is recommended 
to benchmark the energy consumption indices of residential buildings in 
Hong Kong using the following principal groups: public rental housing 
(PRH), private housing, and individual houses [48]. As all PRH buildings 
are administered and uniformly designed by the Housing Authority and 
the existing number of PRH flats accommodate almost half the popu
lation [49], the predominant and latest cruciform Concord PRH build
ings (after 2000s) and the Y-shape Trident PRH buildings (after 1980s), 
which are found in around 70% of all new PRH estates built after 1980s 
and will continue to be built across the city by the government in the 
future [50,51], were selected as the representative PRH archetypes in 
this study. Private housing buildings can be generally divided into the 
old tenement house style, often referred to as “Tong Lau” (before 1970s), 
old private housing (from 1970s to 2000s), new private housing (from 
2000s), and village houses (the common individual building type in 
suburban areas) based on previous categorization studies of building 
archetypes in Hong Kong [52,53]. Apart from the PRH buildings, old 
private housing, new private housing, and Tong Lau account for 13.4%, 
12.7%, and 5% of the city-scale residential stocks based on habitable 
floor area [53]. The built form typology within each residential arche
type is considered rather homogeneous and different archetypes have 
different building characteristics related to building performance [54], 
for example, window-to-wall ratio (WWR), window glazing, building 
size and shape (i.e., floor area and floor layout), shading devices, 
external wall coating, etc. (see Table 3). Significant difference of 
anthropogenic heat flux between these residential archetypes in Hong 
Kong has also been identified by Schoetter et al. [55]. Set against the 
above considerations, these six residential archetypes are therefore 
selected as the typical residential archetypes. Photographs of the refer
ence buildings selected for each archetype are presented in Fig. 3. 

Fig. 2. Boxplots of outdoor daytime and nighttime temperature above extreme thresholds (28.0 ◦C for nighttime and 32.8 ◦C for daytime) under different 
weather datasets. 

Table 2 
The heat event intensity of different weather datasets for daytime and nighttime.  

Weather dataset TMY XMY SRY THY-I THY-E 

HI in Daytime 0 28.7 33.7 39.3 24.2 
HI in Nighttime 633.9 1479.96 889.6 1386.1 803.6  
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Table 3 
Building characteristics of selected residential archetypes in Hong Kong.  

Building 
characteristics 

Concord PRH Y-Shape Trident 
PRH 

Old private housing New private housing Tong Lau Village/Individual house 

Floors: 30-45 stories 30-40 stories 8-30 stories 30-60 stories 4-8 stories 3 stories 
Construction period: After 2000s After 1980s 1970s–2000s After 2000s 1950s–1970s After 1970s 
Units per floor: 8 units 24 units 4–8 units 4–8 units 2–8 units 1 unit 
Reference flat area 

(m2) 
35.3–45.9 31.9–44.3 50.8–87.7 44.5–73.7 36.0–42.5 57.0 

Floor layout: Cruciform Y-shape Tower-type Tower-type Rectangular Rectangular 
Glazing type: Single glazing Single glazing Single glazing Tinted single glazing Single glazing Single glazing/Tinted single 

glazing 
Shading: Building self- 

shading 
Building self- 
shading 

Bay windows/Metal 
overhangs 

Balconies/Building self- 
shading 

Metal overhangs/ 
None 

Balconies with living room 

WWR 0.15 0.31 0.2-0.4 0.2-0.5 0.2-0.4 0.2-0.4  

Fig. 3. The description (actual photos, floor plans and test sites) for Hong Kong residential archetypes.  
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2.3. On-site measurement of typical residential archetype 

To calibrate the building simulation model for the selected residen
tial archetypes, a reference building for each of those considered was 
selected for on-site measurement and metadata archiving. The measured 
flats are all located on the middle floors (i.e., neither the top nor ground 
floor) of the reference buildings. This is because most buildings in Hong 
Kong are high-rise or mid-rise buildings. Therefore, there are many more 
people living in the middle floors than in the top floors. The floor plan 
and test sites for each reference building are presented in Fig. 3. The 
detailed architectural drawings, building thermophysical parameters, 
and building construction materials of PRH buildings are well docu
mented on the Housing Authority Department website [56] and the local 
green buildings scheme BEAMPlus [48], with its typical Y-shape PRH 
building, was included for field measurement and building model cali
bration. The building physical parameters of PRH buildings are listed in 
Table A1. Using a boxed, mounted, and calibrated Testo-480 instrument, 
a short-term measurement of dry-bulb temperature and relative hu
midity was conducted on fixed indoor test sites at a height of 1.1 m (in 
bedrooms and living rooms) lasting from one to two weeks in September 
of 2018 and May/August of 2020, to represent the typical summer in
door thermal environment of residential buildings with natural or 
mixed-mode ventilation. The monitoring meteorological parameters 
and equipment information are summarized in Table 4. The metadata of 
measurement conditions for different residential archetypes are also 
listed in Table A1. Meanwhile, the outdoor temperature, relative hu
midity, wind speed, wind direction, and cloud cover data at hourly in
tervals during the monitoring time were obtained from the HKO 
Headquarters while other meteorological variables including global and 
diffuse solar radiation were acquired from the King’s Park station 
located at 1.2 km from the HKO Headquarters on an unobstructed point. 

2.4. Calibration of the building simulation model 

The building simulation models were set up with the widely used and 
validated building simulation tool, DesignBuilder interface, using 
EnergyPlus V8.5. The self-shading, external shading and surrounding 
buildings at sites were also constructed in the model to consider their 
shading effects. A calibration process was needed to identify the inde
pendent variables with uncertainty that could significantly impact the 
simulated outputs. As the building geometry, WWR ratio, glazing type, 
and shading devices can be identified from the field study, the relevant 
parameters were fixed as the constant input values. Whereas thermal 
performance, that is, the U-value of walls and floor slabs, solar absorp
tance of external walls, and air-infiltration of joints between envelope 
components were impractical to be precisely quantified due to the un
known building construction of the varied old buildings. Therefore, 
these parameters are sources of uncertainty, with the exception of the 
PRH buildings with the known thermophysical parameters and building 
construction materials, were taken as independent variables in the 
calibration process. Additionally, residents were asked to record their 
occupancy and window-opening schedule on an hourly basis during the 
on-site measurement period. The schedules for internal heat gains, 
window opening, and lighting were adjusted based on the recorded 
schedule in the calibration process. The light power density for living 

rooms and bedrooms was set to 14 and 17 W/m2 respectively according 
to the local code of practice, and the occupant load was set to 100 W/ 
person [57]. As all windows and doors could be manually opened in all 
reference buildings, the Airflow Network model in EnergyPlus was 
applied to simulate the natural ventilation of residential buildings under 
a free-running environment. 

Using outdoor weather data from meteorological stations during the 
measurement time as the input weather data (EnergyPlus Weather 
format) for the simulation of each residential archetype, the hourly 
simulated indoor temperature of building units was then compared with 
the measured hourly averaged temperature during the field measure
ment. To evaluate the influence of independent variables with uncer
tainty on the indoor air temperature, a sensitivity analysis by adjusting 
these uncertain building parameters was first performed. Then, a series 
of revisions of the uncertain variables with the sequence of importance 
were made to the initial model until the statistical criteria between the 
simulated and measured values were satisfactory, see Fig. 1. The 
detailed trial-and-error calibration process adopted in this study was 
proposed by Snyder et al. [58,59]. After the manual calibration of 
reference models, the modified models meeting the following American 
Society of Heating Refrigerating and Air-conditioning Engineer (ASH
RAE) Guideline 14 [60] criteria could be assumed as the calibrated 
models. The goodness-of-fit of building simulation can be evaluated by 
the Normalized Mean Bias Error (NMBE) and the Coefficient of Variation 
of Root Square Mean Bias Error CV(RMSE): 

NMBE(%)=

∑n
i=1

(
tip − tim

)

n − 1
×

1
tm

(3)  

CV(RMSE)(%)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
tip − tim

)2

n − 1

√

×
1
tm

(4)  

where tip is the simulated temperature, tim is the measured temperature 
time at time interval i, tm is the mean value of total numbers of n mea
surement data. The maximum acceptable values for NMBE and CV 
(RMSE) are 5% and 15% for hourly data according to the ASHRAE 
Guideline 14. 

However, it should be noted that NMBE only provides a value in 
percentage, thus knowledge of the scale of the data cannot be fully 
understood [61]. Besides, CV(RMSE) cannot normalize additive differ
ences between datasets. Therefore, CV(RMSE) of one simulation period 
cannot be compared with other periods when they differ in an additive 
way [61]. 

After calibrating all uncertain building parameters, NMBE values for 
bedroom and living room range from 0.17% to 1.91%, and the CV 
(RMSE) values range from 1.01% to 4.68% (Table 5). The calibrated 

Table 4 
Summary of the monitoring meteorological parameters and the equipment.  

Parameters Equipment Uncertainty and 
range 

Measured 
interval 

Dry Bulb 
Temperature 
(◦C) 

Testo-480 Digital 
temperature and 
humidity meter 

±0.2 ◦C; − 20 ◦C to 
+ 70 ◦C 

1 min 

Relative 
Humidity (%) 

± (1.0% + 0.7% of 
measured value); 
0–100% 

1 min  

Table 5 
NMBE and CV(RMSE) for each archetype and the calibrated uncertainties 
values.  

Items NMBE for hourly 
data 

CV(RMSE) for hourly 
data 

Old Private House Living 
room 

0.86% 4.68% 

Bedroom 1.01% 3.78% 
Tong Lau Living 

room 
0.28% 1.01% 

Bedroom 0.17% 1.76% 
Village House Living 

room 
0.30% 1.23% 

Bedroom 0.70% 1.44% 
New Private House Living 

room 
1.91% 2.41% 

Bedroom 0.18% 1.09% 
Y-Shape Trident 

PRH 
Living 
room 

0.66% 1.12% 

Bedroom 0.49% 1.76%  
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Fig. 4. Comparison of the measured and simulated indoor air temperature for living room and bedroom of different archetypes. The shaded area represents a 
measurement uncertainty of ±0.2 ◦C. 
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building physical parameters of the six residential archetypes are listed 
in Table A1. Fig. 4 compares the hourly simulated indoor temperature 
with the measured temperature in the living room and bedroom 
respectively after the calibration process. The diurnal variation of 
simulated temperatures is in good agreement with the measured values 
in the actual buildings. In terms of deviation, the main peaks in different 
rooms are slightly underestimated or overestimated by the simulation. 
This can be partly explained by the measurement errors. Since measured 
temperatures influenced by experimental location have the discrepancy 
with the simulation ones, the volume averaged values, even if the indoor 
measured sites are located at the center of rooms. It may also be 
explained by the uncertainty and fluctuation of air change rate in the 
measurement. Since a constant hourly air change rate was used in the 
building simulation, there likely are discrepancies between the averaged 
air change rate and instantaneously actual rate within 1 h. However, 
both statistic criteria of all measured archetypes met the ASHRAE 
Guideline 14. It means that these EnergyPlus models can be adequately 
credible for simulating the indoor temperature if the outdoor weather 
files are applicable and representative. 

After calibrating the reference buildings, the standard occupancy, 
domestic hot water, and lighting and appliance schedules are set to the 
standard residential schedule profiles in Hong Kong according previous 
surveys in the literature [62–64], see Table A2 in Appendix. To consider 

the commonly used occupant-controlled natural ventilation in Hong 
Kong residential buildings, the window-opening behavior is controlled 
by the changeover mixed-mode if the external temperature is lower than 
the internal one. To assess the effects of different extreme weather 
conditions, the newly developed extreme weather datasets in Section 2.1 
are used as weather input files for building simulation for the different 
residential archetypes. 

2.5. Indoor overheating assessment criteria 

Defining a suitable thermal comfort and overheating criteria for 
naturally ventilated buildings is not trivial. First, three credible criteria 
provided by CIBSE Technical Memorandum 52 (TM52) [39] is used to 
identify overheating risks in naturally ventilated buildings. The room is 
identified as ‘overheated’ if two or more of the following criteria are 
met:  

● Criterion 1: Hours of Exceedance (He): The number of hours during 
which ΔT (the difference between the actual temperature and the 
maximum acceptable temperature Tmax) is equal or greater than one 
degree (K) shall not be more than 3% of occupied hours.  

● Criterion 2: Daily Weighted Exceedance (We): The time (hours or part 
hour) in which the temperature exceeds Tmax by at least 1 K is 

Fig. 4. (continued). 
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multiplied by the number of degrees by which is exceeded. Six 
degree-hours is the maximum threshold in any one day.  

● Criterion 3: Upper Limit Temperature (Tupp): The absolute maximum 
ΔT of a room should not exceed 4 K compared to the acceptable 
upper limitation. 

Normally, the widely used adaptive comfort standard (ACS) for 
naturally ventilated buildings are ASHRAE 55 and the European stan
dard EN16798 (formerly EN15251) [65]. However, the local ACS model 
for a specific climate, e.g., hot and humid climates, could differ mark
edly from the global standard originally designed for temperate cli
mates. In areas with hot and humid climates, some literature have 
developed ACS model based on the ASHRAE RP-884 database [66] or 
large-scale thermal comfort surveys [67]. Using the ASHRAE RP-884 
database, the local ACS model in Hong Kong was developed by Cheng 
and Ng [68]. This ACS model is selected for the indoor discomfort 
assessment because it introduces a function to addresses the indoor 
neutral air temperature (Ti) in relation to outdoor air temperature (To) as 
follows:  

Ti = 16.7 + 0.33To                                                                          (5) 

The acceptable temperatures set the limits of the acceptable zone and 
the range of acceptable temperatures are 3.5 K for 80% acceptable upper 
limitation and 2.5 K for 90% acceptable upper limitation. The 80% and 
90% acceptable upper limitations are used for Tmax in Criterion 1. 

The criteria for representing the severity and quantity of heat events 
mainly include the duration, frequency, and magnitude of heat events 
[34]. As the scope of this study is to quantify overheating risks under the 
extreme weather conditions, two indices including overall intensity 
represented by HI and duration of heat events represented by L were 
used. In addition to the TM52 approach based on the adaptive comfort 
model, the static extreme event thresholds, HI and L of prolonged heat 
events, which are strongly associated with mortality [25] (same as Eq 
(1) based on the thresholds of Tl, i.e., VNs and VHDs) were adopted to 
assess the indoor overheating and building passive survivability under 
extreme weather conditions. Rather than the commonly used daily data 
for outdoor thermal comfort assessments, the hourly data were selected 
for the indoor thermal comfort assessment as it is the focus of this study. 

3. Results 

3.1. Overheating risks using static extreme event thresholds 

According to the occupancy profile of different rooms, the occupied 
hours 08h00 to 23h00 and 23h00 to 07h00 were included for assessment 
of the overheating risks above static extreme thresholds of Tl in the 
living rooms and bedrooms, respectively. The HI and L of heat events for 
six archetypes were compared between different weather conditions 
(see Table 6). It can be seen that the impact of extreme weather condi
tions on the indoor HI varies across the different weather datasets and a 
considerable difference of overheating risks was observed in living 
rooms and bedrooms in daytime and nighttime, respectively. 

Fig. 5 shows the violin plots of overheating during the occupied time 
of living rooms. In the daytime, overheating risks based on VHDs were 
evident in all the extreme weather datasets, whereas there were no 
overheating risks in any archetypes under the TMY condition. It is also 
noteworthy that daytime overheating risks were observed in most ar
chetypes under the different extreme conditions. The exception was the 
New Private House where no exceedance of the extreme Tl threshold was 
simulated for the living room. Compared with the typical weather 
condition, the TMY, HI in the daytime can increase up to 26.34 for the 
XMY, 22.68 for the SRY, 28.75 for the THY-I, and 19.63 for the THY-E. 

The maximum of daytime HI in different archetypes is normally iden
tified when employing the THY-I where it shows a higher probability 
density than the SRY and XMY, except for the archetypes of Tong Lau 
and Village House. Additionally, the longest event of daytime L and the 
maximum daytime temperature generally occurred when using the THY- 
E for all archetypes. 

Fig. 6 shows the violin plots of overheating in the occupied time of 
bedrooms in different archetypes. Compared with the TMY, a significant 
increase in nighttime HI under the weather condition of the XMY 
(121–164%) and the THY-I (102–144%) can be observed in the bed
rooms. The indoor nighttime HI was more severe than outdoors in all 
weather datasets (see Table 2). Furthermore, the longest event of 
nighttime L and bimodal probability distribution daily oscillations of 
indoor air temperature were all found for the XMY. A similar bimodal 
probability distribution was found in the THY-I. The relative 

Table 6 
The intensity (HI) and duration (L) of heat event for archetypes under different 
weather conditions.  

Archetype Indicator TMY XMY SRY THY-I THY-E 

New 
Private 
House 

HI in 
daytime 

0 0 0 0 0 

L in 
daytime 

0 0 0 0 0 

HI in 
nighttime 

534.99 1384.94 668.48 1246.63 625.91 

L in 
nighttime 

139 222 104 221 156 

Concord 
PRH 

HI in 
daytime 

0 26.34 22.68 28.75 18.86 

L in 
daytime 

0 6 5 7 8 

HI in 
nighttime 

645.46 1551.13 820.05 1403.69 815.43 

L in 
nighttime 

105 198 103 187 116 

Old 
Private 
House 

HI in 
daytime 

0 17.39 21.67 23.23 17.00 

L in 
daytime 

0 7 6 4 8 

HI in 
nighttime 

829.72 1836.36 1050.60 1678.82 972.74 

L in 
nighttime 

139 222 112 212 178 

Tong Lau HI in 
daytime 

0 3.19 2.73 0.44 2.37 

L in 
daytime 

0 8 8 3 7 

HI in 
nighttime 

694.40 1676.81 855.25 1530.33 900.21 

L in 
nighttime 

105 222 103 193 163 

Village 
House 

HI in 
daytime 

0 3.32 5.54 3.37 12.00 

L in 
daytime 

0 5 5 4 8 

HI in 
nighttime 

634.77 1690.78 820.68 1551.66 896.06 

L in 
nighttime 

154 223 108 223 169 

Y-Shape 
PRH 

HI in 
daytime 

0 18.61 21.06 22.79 19.63 

L in 
daytime 

0 7 6 5 9 

HI in 
nighttime 

565.50 1421.94 723.66 1254.18 710.25 

L in 
nighttime 

67 170 100 168 115 

Note: The maximum of each indicator of different archetypes are marked as bold 
numbers. 
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discrepancy of cumulative heat intensity and nighttime L between the 
THY-I and the XMY was negligible, as shown in Table 6. By contrast, 
slightly increased risks in terms of HI were found for the SRY and the 
THY-E. There was only a 23–29% increase of HI risks for the SRY, and a 
17–41% increase for the THY-E, compared with the TMY. As for night
time L, the relative increase in the THY-E varied from 9 to 72%. 
Meanwhile, the SRY even had a marginally decreased nighttime L (-30–- 
2%). However, the maximum and outliers of nighttime temperature 
often appeared in the SRY or THY-E. 

3.2. Overheating risks using the TM52 approach based on the adaptive 
comfort model 

To further explore the adaptive thermal comfort of naturally venti
lated or hybrid buildings under the various extreme weather conditions, 
Fig. 7 represents the hourly indoor air temperature versus the daily 
outdoor mean temperature over the entire year in different archetypes. 
The hourly indoor air temperature is compared with the 80% and 90% 
acceptable upper limitations in the local ACS model mentioned in Sec
tion 2.5. Overall, all archetypes experienced discomfort hours in all the 
weather conditions under consideration based on the upper limitations 

of the ACS model. Moreover, most daily oscillations of indoor air tem
perature in the TMY were lower than 5 K during the summertime; but 
the daily oscillations of indoor air temperature in the same archetype 
were considerably amplified by the outdoor extreme weather condi
tions, especially the THY-I and SRY. Particularly on some days with a 
low outdoor mean temperature, a higher risk of indoor air temperatures 
was observed when using the SRY and THY-I compared to the XMY and 
THY-E. Additionally, the number of hours beyond the upper ACS limit 
was considerably varied among different archetypes, for instance, 
Concord PRH and New Private House, while the daily oscillations in 
different archetypes experienced a similar trend for the same weather 
type. 

Fig. 8 shows the hours of exceedance (He) for different archetypes 
quantified by the ACS model under different extreme weather condi
tions. As the TM52 adaptive approach suggests considering the occu
pancy of different rooms, the occupied hours were considered separately 
for the living rooms (daytime) and bedrooms (nighttime). In contrast to 
the static thresholds in Section 3.2, the severity of overheating risks in 
living rooms and bedrooms based on the adaptive approach has 
reversed; the magnitude of He in the daytime was considerably higher 
than that during the nighttime. All archetypes experienced a large 

Fig. 5. Violin plots of overheating in occupied time (08h00 to 22h00) of living rooms under different extreme weather conditions. Note: the empty bar indicates no 
temperatures above the threshold. 

Fig. 6. Violin plots of overheating in occupied time (23h00 to 07h00) of bedrooms under different extreme weather conditions.  
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Fig. 7. Hourly indoor air temperature versus the daily outdoor mean temperature under the different weather conditions.  
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Fig. 7. (continued). 
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Fig. 8. The hours of exceedance (He) for different archetypes under different weather conditions (a) daytime and (b) nighttime.  
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number of He (more than 3% of the occupied time) in the daytime, while 
some archetypes satisfied Criterion 1 at nighttime, for example, the 
Village House and Y-Shape House in the TMY, and New Private House in 
the TMY, SRY, and THY-E. When comparing the impact of different 
extreme weather datasets, the most remarkable characteristic is that He 
of the THY-I and XMY was significantly higher than that of the TMY, 
especially at night. The increase of He for the XMY and THY-I was up to 
847% and 624%, respectively, taking the number of He at the 90% 
acceptable upper limit of the TMY as baseline. However, the number of 
daytime He shows an insignificant increase of 28–48% for the SRY and 
2–9% for the THY-E. This pattern using the adaptive threshold is similar 
to that of the static thresholds. Moreover, the number of daytime He for 
the THY-I was larger than that for the XMY in all archetypes, while the 
number of nighttime He for the XMY was larger than that for the THY-I. 

Fig. 9 and Fig. 10 depict the days with Weighted Exceedance (We) 
more than 6 and Upper Limit Temperature (Tupp) for all archetypes 
under different weather conditions. It can be seen that most archetypes 
fail to comply with Criterion 2 even at the 80% acceptable upper limit, 
with the only exception being the New Private House which does comply 
with Criterion 2. The pattern of disparities of We between the TMY and 
the other extreme datasets is similar to the trend of He, although most of 
the disparities of We are larger than those of He. When the We was 
examined separately during daytime (in living rooms) and nighttime (in 
bedrooms), most were found in the living rooms with only a small 
amount at bedrooms. In the case of Tupp, different extreme weather 
datasets show one or two K higher than the TMY. However, there was no 
significant difference of Tupp between different extreme weather data
sets. The daytime Tupp of Concord PRH, Old Private House, and Y-shape 
PRH failed to comply with Criterion 3 under extreme weather conditions, 
whereas all archetypes complied with Criterion 3 at nighttime. 

4. Discussion 

4.1. The applicability and limitations of different weather datasets 

The findings in Section 3 illustrate the importance of considering the 
robustness of the building thermal performance against different 
weather boundaries. On the one hand, the results show that the most 
severe HI and He in the daytime for most of the modeled archetypes can 
be identified when using the THY-I, while the most severe nighttime HI 
and He can be highlighted by the XMY. On the other hand, the longest 
daytime L for a heat event can likely be found when using the THY-E 
weather dataset. However, the methods for constructing the XMYs 
have been challenged by some researchers [34,69], because the XMYs 
could tend to overestimate the overheating due to its constructing 
method by combining months with the highest daily or hourly mean 
temperature which, in reality, is unlikely for all of them to occur in the 
same year. It is also questionable whether combining the most extreme 
months is useful for finding design solutions to respond to the extreme 
weather conditions as this may lead to design solutions with a very long 
return period. To assign appropriate return periods for hot events, it is 
interesting to note that CIBSE Weather Files 2016 [70] proposed the new 
probabilistic DSY which contains a range of overheating events with 
different return periods. However, the effects of solar radiation and 
other climatic variables which could be crucial for overheating risks of 
heavily glazed buildings in subtropical cities have been ignored in this 
weather data. In this study, it is also noted that the difference of HI and 
He between the XMY and THY-I was not significant especially in the 
daytime. Which means the XMY could be a supplementary way to 
consider the one of most extreme conditions even if it may slightly 
overestimate the overheating in the nighttime. By contrast, the selection 

of year in THYs is based on the year with the highest or longest indoor 
heat event. This study confirms the suitability of the THY-I and THY-E 
for the assessment of the most extreme overheating risks. On the con
trary, the SRY does not fully represent the most extreme overheating 
risks at nighttime which is critical for the health impacts, such as higher 
mortality risk [41], and passive survivability of residential buildings in 
subtropical cities. It is therefore necessary to further incorporate the 
sorting of daily minimum temperature in the SRY adjustment to better 
reflect nighttime situations in subtropical climates. 

Additionally, different rooms with different shading configurations 
could considerably affect the applicability of the THY-I and XMY. For 
example, the highest daytime HI in Tong Lau and Village House was not 
found when using the THY-I, as shown in Table 6. This is because the 
living rooms in Tong Lau and Village House are fairly shaded by the 
other rooms, balconies, or neighboring buildings, and thus are not 
exposed to direct solar radiation during the daytime, as shown in Fig. 3. 
Therefore, using the THY-I with a higher solar radiation may not cause 
more heat stress for well-shaded rooms than using the other weather 
datasets like the XMY (refer to Fig. A1). As well-shaded buildings are 
common in a high-density urban setting, the weather data with a higher 
solar radiation may not provide the most representative conditions for 
overheating risk assessment in the subtropical high-density cities. Thus, 
it is plausible to suggest that overheating risk assessment of different 
buildings in such high-density settings should consider the combination 
of different extreme weather datasets, for instance, the XMY and the 
THYs, instead of using only one weather file. 

4.2. Performance comparison between different residential archetypes 

With respect to the thermal performance comparison among the six 
archetypes, the indoor average daily range versus average temperature 
of each archetype are plotted for the different weather conditions in 
Fig. 11. During summer, the indoor average temperatures in all arche
types were higher than the outdoor average temperature, whereas the 
indoor average daily temperature ranges were all smaller than those 
outdoors. This implies that all archetypes release less heat to the outdoor 
environment at night than the amount absorbed and stored in the 
buildings during the day. However, the diurnal extreme could be 
reduced depending on the thermal mass of the building envelope and 
shading components. This is because the mass of a building provides the 
thermal capacitance to have inertia against temperature fluctuations 
and shading components help minimize the solar heat gain to the 
building envelopes. Among these archetypes, a remarkable trend is that 
indoor average temperatures for the New Private House showed the 
smallest difference with outdoor average temperatures, and its average 
daily range of temperature inside was the lowest, which further implies 
that the New Private House has the best thermal performance among 
these archetypes. This can be mainly attributed to the external tinted 
glazing with low-e coating and balconies with around 1 m projection 
which has the same function with external shading overhangs, as shown 
in Table 3 and Fig. 3. Additionally, the living room in the New Private 
House has a higher WWR and a larger openable window area, which 
means it can fully utilize the cooling effect of nocturnal natural venti
lation and considerably reduce the daytime solar heat gain through the 
windows. 

By contrast, the vulnerability of public housing under different 
extreme weather conditions was constantly found in the two PRH 
buildings which showed the largest indoor average temperatures and 
diurnal temperature extremes. Window glazing with a higher Solar Heat 
Gain Coefficient and poor external shading designs are mainly respon
sible for such poor thermal performance in the PRH buildings, as the 
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Fig. 9. The days with Weighted Exceedance (We) more than 6 for different archetypes under different weather conditions (a) living rooms (b) bedrooms.  
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Fig. 10. The upper limit temperature for different archetypes under different weather conditions (a) daytime (b) nighttime.  
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solar heat gain into a building through windows is deemed more 
important for building performance in Hong Kong compared with wall 
insulation [71]. Therefore, to be more adaptive to the changing climate, 
the design of new PRH buildings or retrofit of existing ones should focus 
on how to avoid solar heat gain in the daytime, such as designing the 
balcony for living rooms or bedrooms facing west or east, retrofitting 
existing glazing with the tinted one with low-e coating, adding external 
shading devices with longer projection, and simultaneously increasing 
window openable areas to utilize to best advantage the nocturnal nat
ural ventilation. Moreover, it is observed that the PRH buildings and 
Tong Lau, which accommodate most of the elderly, physically disabled 
or financially less capable people, are exposed to higher overheating 
risks. This reflects a potential correlation between overheating risks and 
socioeconomic inequity issues for residents living in these buildings. 
Special attention and actions should thus be given to these vulnerable 
people and in improving the resilience of PRH buildings and Tong Lau to 
prolonged overheating conditions. 

4.3. Limitations and future works 

Different methods to construct extreme weather data are compared 
in the subtropical high-density Hong Kong residential buildings. Since 
different meteorological variables may have a different influence on the 
building thermal performance in a different climate zone, the applica
bility of different extreme weather datasets should be tested in other 
climate zones and for other archetypes in the future to demonstrate the 
validity of and consistency with the findings of this study. As the key aim 
of this work is to compare the applicability of different weather datasets 
using the same baseline of 1997–2014, the warmest years experienced in 
recent years have not been considered in the extreme weather dataset 
construction. Although the weather datasets only focus on methods 
based on the historical recorded data, the results can imply the appro
priate extreme deign weather datasets to provide more robust weather 
conditions for building thermal simulations if hourly weather data for 
the more recent years or the future are available. 

It should also be noted that the calibration of different models is 
based on monitoring of typical summer days instead of extreme condi
tions due to the limited access of these occupied buildings and practical 
difficulties for a long-term monitoring campaign. It is possible that the 

calibrated models do not perform as well under extreme conditions. The 
results of overheating assessments can also be affected by the assumed 
occupant behaviour, occupancy, and equipment operation schedule in 
the modelling. Moverover, it is noteworthy that even if the adaptive 
thermal comfort model and static thresholds can be used to quantify the 
overheating risks, a controversy exists on the suitability of applying 
adaptive models in bedrooms, where occupants have limited adaptive 
opportunity during nighttime, and the application of evolved thresholds 
for assessing buildings in use [72]. Additionally, the influence of the 
urban microclimate conditions around these high-rise buildings has not 
been taken into account in this study due to the limitations of BPS tools, 
but the weather data are collected from the HKO Headquarters weather 
station, which is located in a densely developed station in urban centre 
Tsim Sha Tsui, Hong Kong. In future works, the urban scale overheating 
risks could be explored since the building parameters of Hong Kong 
residential archetypes has been validated and well documented in this 
study. 

5. Conclusion 

This comparative study investigated the applicability of four ap
proaches to develop extreme weather datasets for assessing overheating 
risks during hot and humid summers. After the calibration of building 
simulation models, overheating risks in six residential archetypes in 
subtropical Hong Kong under different extreme weather conditions were 
quantified by static extreme event thresholds and the adaptive TM52 
approach. According to the results, different weather datasets have their 
unique characteristics and limitations for the evaluation of overheating 
risks in these residential buildings. Overall, the THY-I can be used to 
identify the most severe HI and He in the daytime, and the THY-E to 
identify the longest daytime L in most of the modeled archetypes, while 
the most severe nighttime HI and He can be captured when using the 
XMY. However, it was found that using the SRY is not suitable for 
investigating the overheating risks during nighttime and, compared to 
the XMY, using the THY-I may fail to evaluate the maximum HI of well- 
shaded buildings. Furthermore, the thermal performance of several 
typical high-density building types was compared in different extreme 
climate conditions. The building type with a long projection balcony and 
a bigger openable window with low-e coating consistently had a better 
performance than the other building types in different extreme climatic 
conditions. These results underline the importance of considering the 
appropriate overheating criteria and extreme weather datasets to ensure 
robust assessments of passive survivability of residential buildings and 
the possibility of designing climate resilient buildings to mitigate 
extreme weather conditions. 
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Appendix A 

Fig. 11. The relationship between summer average daily range and average 
temperature in different archetypes and outdoors under different 
weather conditions. 
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Fig. A1. Boxplots of different meteorological variables under different weather datasets.   

Table A1 
The metadata of measurement conditions and calibrated building physical parameters of different residential archetypes.  

Measurement conditions and building 
characteristics 

Concord 
PRH 

Y-Shape Trident 
PRH 

Old private 
housing 

New private 
housing 

Tong Lau Village/Individual house 

Sky conditions during measurement 
period 

– Partially cloudy Clear sky Clear sky Partially cloudy Overcast sky 

Test floor location/floors of the whole 
building 

– 18/34 8/9 9/40 4/6 2/3 

Occupant activity – Unoccupied Unoccupied 18:00PM- 
08:00AM 

18:00PM(22:00PM)- 
08:00AM(10:00AM)* 

18:00PM(22:00PM)- 
08:00AM(09:00AM)* 

Floor height (m) 2.75 2.70 2.90 2.80 2.70 2.60 
Total occupied floor area (m2) 325.1 920.6 267.5 412.8 124.7 58.4 
Window openable area ratio 0.50 0.50 0.60 0.65 0.60 0.85 
Window to external wall ratio 0.15 0.31 0.18 0.28 0.22 0.23 
U-value of external walls (W/(m2K)) 2.75 3.33 3.30 2.05 3.85 3.30 
U-value of floor slabs (W/(m2K)) 2.48 2.48 2.50 2.50 2.75 2.75 
U-value of glazing (W/(m2K)) 5.75 5.75 5.75 5.00 5.95 5.75 
Solar heat gain coefficient of glazing 0.60 0.60 0.60 0.35 0.85 0.60 
External wall solar absorptance 0.58 0.58 0.35 0.65 0.50 0.40 
Air flow coefficient of external windows 

cracks (kg s− 1m− 1) 
0.0018 0.0018 0.0014 0.0010 0.0030 0.0030 
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Note: means the measurement is not conducted in this building type. 
*Means the occupant schedule could be alternative during the measured period. 

Table A2 
Building occupancy and operation schedule (habitable area).  

Hour Occupancy (Weekdays) Occupancy (Weekends) Equipment (Mon-Sun) Lighting (Mon-Sun) 

1 1 1 0.2 0 
2 1 1 0.2 0 
3 1 1 0.2 0 
4 1 1 0.2 0 
5 1 1 0.2 0 
6 1 1 0.2 0 
7 1 1 0.37 0.3 
8 0.7 0.9 0.54 0.5 
9 0.4 0.7 0.54 0.3 
10 0.3 0.6 0.54 0 
11 0.3 0.5 0.54 0 
12 0.2 0.4 0.54 0 
13 0.2 0.3 0.54 0 
14 0.2 0.3 0.63 0.5 
15 0.2 0.3 0.43 0 
16 0.3 0.3 0.43 0 
17 0.3 0.4 0.43 0 
18 0.4 0.4 0.43 0 
19 0.6 0.5 0.43 0.5 
20 0.7 0.6 1 1 
21 0.8 0.7 1 1 
22 0.9 0.8 1 1 
23 0.9 0.9 1 1 
24 1 1 1 0.5  
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